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Preface

In the last two decades, the theory of symmetry class of tensors has been one of the
attractive subjects in the multilinear algebra. So many mathematicians have been
working on the variety of problems concerning symmetry class of tensors. Below we
have a glimpse on the main ideas of the thesis.

Let V be an m-dimensional vector space over the complex field C, and let G
be a subgroup of the symmetric group on n letters, $n, and let χ be an irreducible
complex character of G. Suppose φ :

n
×V → U be an n-linear function, where U is

a finite dimensional vector space over C. We say φ is symmetric with respect to G
and χ if for all v1, . . . , vn ∈ V ,

χ(1)
|G|

∑
σ∈G

χ(σ)φ(vσ−1(1), . . . , vσ−1(n)) = φ(v1, . . . , vn).

A finite dimensional vector space S over C is called a symmetry class of tensors
associated with G and χ if there is an n-linear function φ :

n
×V → S which is

symmetric with respect to G and χ such that
(i) 〈Im φ〉 = S,
(ii) for each finite dimensional vector space U over C and for each n-linear function
ψ :

n
×V → U , symmetric with respect to G and χ, there exists a unique linear

transformation f : S → U such that the following diagram commutes.
n
×V φ−→ S

ψ ↓ ↙ f

U

We can prove that the symmetry class of tensors associated with G and χ exists
and it is unique up to isomorphisms of vector spaces. Also we can prove that the
symmetry class of tensors associated with G and χ is (isomorphic with) the image
of the linear operator T (G,χ) :

n
⊗V →

n
⊗V , where

T (G,χ)(v1 ⊗ · · · ⊗ vn) =
χ(1)
|G|

∑
σ∈G

χ(σ)vσ−1(1) ⊗ · · · ⊗ vσ−1(n),
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where
n
⊗V is the n-th tensor power of V and v1 ⊗ · · · ⊗ vn is a typical element of

it. We denote the symmetry class of tensors associated with G and χ by V n
χ (G).

In addition, if we assume that V is an m-unitary space, then V n
χ (G) will become a

unitary space.
Finding an explicit formula for the dimension of V n

χ (G), investigation of the ex-
istence of an orthogonal basis of decomposable symmetrized tensors for V n

χ (G) and
non-vanishing of V n

χ (G), for a general or certain group G, are open problems in this
branch of mathematics. In this thesis, we consider certain groups G and an irre-
ducible character χ of G and answer the above questions. The certain groups which
we considered are G = 〈π1 . . . πp〉, where the πi’s, 1 ≤ i ≤ p, are disjoint cycles in $n,
G = T4n, G = PSL2(q) and a group G of order n as a subgroup of $n with Cayley
representation. The results of this thesis appeared in some international journals
(see [2], [3], [4] and [5]).

M. R. Pournaki
March 2000
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Extended Abstract

1 Introduction

Let V be an m-dimensional vector space over the complex field C. Let
n
⊗V be the

n-th tensor power of V and write v1⊗· · ·⊗vn for the decomposable tensor product of
the indicated vectors. To each permutation σ in $n there corresponds a unique linear
operator P (σ) :

n
⊗V →

n
⊗V determined by P (σ)(v1⊗· · ·⊗vn) = vσ−1(1)⊗· · ·⊗vσ−1(n).

Let G be a subgroup of $n and I(G) be the set of all the irreducible complex
characters of G. It follows from the orthogonality relations for characters that{

T (G,χ) :
n
⊗V →

n
⊗V | T (G,χ) =

χ(1)
|G|

∑
σ∈G

χ(σ)P (σ); χ ∈ I(G)
}

is a set of annihilating idempotents which sum to the identity. The image of
n
⊗V

under T (G,χ) is called the symmetry class of tensors associated with G and χ and
it is denoted by V n

χ (G). The image of v1 ⊗ · · · ⊗ vn under T (G,χ) is denoted by
v1 ∗ · · · ∗vn and it is called a decomposable symmetrized tensor. It is well-known that

dimV n
χ (G) =

χ(1)
|G|

∑
σ∈G

χ(σ)mc(σ) (1)

where c(σ) is the number of cycles, including cycles of length one, in the disjoint
cycle decomposition of σ (see [9]). Also we have that

n⊗
V =

⊕
χ∈I(G)

V n
χ (G) (2)

is a direct sum.
Let Γnm be the set of all sequences α = (α1, . . . , αn) with 1 ≤ αi ≤ m,

so α is a mapping from a set of n elements into a set of m elements. Then the
group G acts on Γnm by σ.α = (ασ−1(1), . . . , ασ−1(n)) where σ ∈ G is a permutation
on n letters and α ∈ Γnm is a mapping from a set of n elements into a set of m ele-
ments. Therefore the action may be written as σ.α = ασ−1 which is a composition
of two functions. Let O(α) = {σ.α| σ ∈ G} be the orbit with representative α, also
let Gα be the stabilizer of α, i.e., Gα = {σ ∈ G| σ.α = α}. Let ∆ be a system of
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distinct representatives of the orbits of G acting on Γnm and define

∆ =
{
α ∈ ∆|

∑
σ∈Gα

χ(σ) 6= 0
}
,

and let Ω be the union of those equivalence classes represented by elements of ∆.
Let {e1, . . . , em} be a basis of V . Denote by e∗α the tensor eα1 ∗ . . . ∗ eαn where

α = (α1, . . . , αn) ∈ Γnm. For α ∈ ∆, V ∗
α = 〈e∗σ.α| σ ∈ G〉 is called the orbital subspace

of V n
χ (G). It follows that

V n
χ (G) =

⊕
α∈∆

V ∗
α , (3)

is a direct sum. In [6] Freese proved that

dimV ∗
α =

χ(1)
|Gα|

∑
σ∈Gα

χ(σ), (4)

in particular, if χ is of degree one, then dimV ∗
α = 1 for all α ∈ ∆.

A particular case appear, when we assume that V is an m-unitary space. In this
case the inner product on V induces an inner product on

n
⊗V whose restriction to

V n
χ (G) satisfies

〈u1 ∗ · · · ∗ un | v1 ∗ · · · ∗ vn〉 =
χ(1)
|G|

dGχ (A)

where A = [aij ]n×n = [〈ui|vj〉]n×n and dGχ (A) =
∑
σ∈G

χ(σ)a1σ(1) . . . anσ(n) is the gen-

eralized matrix function.
With respect to this inner product the sums appearing in (2) and (3) are or-

thogonal direct sums. Also if we suppose {e1, . . . , em} is an orthonormal basis of V ,
then we obtain

〈e∗α | e∗β〉 =


χ(1)
|G|

∑
σ∈Gβ

χ(στ−1) if α = τ.β for some τ ∈ G,

0 if O(α) 6= O(β).

In particular, taking the norm of e∗α, with respect to the induced inner product, one
easily obtains the condition e∗α 6= 0 if and only if α ∈ Ω.

If α = g.γ and β = g′.γ, then gg′−1.β = α, so if we set τ = gg′−1 and use the
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above formula for 〈e∗α | e∗β〉, then we obtain

〈e∗g.γ | e∗g′.γ〉 =
χ(1)
|G|

∑
σ∈Gγ

χ(g′σg−1). (5)

An orthogonal basis of the form {e∗α| α ∈ S}, where S is a subset of Γnm, is called
an O-basis for V n

χ (G). By (3), V n
χ (G) has an O-basis if and only if for all α ∈ ∆,

the orbital subspace V ∗
α has an O-basis. In particular, if χ is of degree one, since

dimV ∗
α = 1 for all α ∈ ∆, then V ∗

α has an O-basis for all α ∈ ∆ which implies
that V n

χ (G) has such a basis. Several papers are devoted in investigation of the
non-vanishing of V n

χ (G) and finding a formula for dimV n
χ (G) in a more closed form

than (1), also discuss about the existence of an O-basis for these vector spaces, see
for example [1], [7] and [14]. In [10] and [12] a formula for dimV n

χ (G) is given when
G is equal to the whole group of $n, also in [13] a formula for calculating dimV n

χ (G)
in the case that G = 〈π1〉 · · · 〈πp〉 is given, where the πi’s, 1 ≤ i ≤ p, are disjoint
cycles in $n. Also, in [7] a necessary and sufficient condition for the existence of
O-basis for V n

χ (G) is given, when G is a cyclic or a dihedral group. The books [8]
and [11] are good sources of information about characters of finite groups and the
symmetry class of tensors respectively.

2 On the Dimensions of Symmetry Classes of Tensors

Associated with the Group G = 〈π1 . . . πp〉

Abstract

The dimensions of the symmetry classes of tensors, associated with a certain
cyclic subgroup of $n which is generated by a product of disjoint cycles is
explicitly given in terms of the generalized Ramanujan sum. These dimensions
can also be expressed as the Euler ϕ-function and the Möbius function. In the
following we show some results appeared in [2].

Definition 2.1 Let n1, . . . , np be positive integers and let h be a nonnegative
integer. Suppose d1|n1, . . . , dp|np. The generalized Ramanujan sum denoted by
S(h;n1, . . . , np; d1, . . . , dp) is defined by
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S(h;n1, . . . , np; d1, . . . , dp) =
[n1,...,np]−1∑

t = 0

(t, n1) = d1

.

.

.

(t, np) = dp

exp
(

2πiht
[n1, . . . , np]

)
.

If the set {0 ≤ t ≤ [n1, . . . , np]− 1| (t, ni) = di; 1 ≤ i ≤ p} is empty, then we define
S(h;n1, . . . , np; d1, . . . , dp) = 0.

Lemma 2.2 Let n1, . . . , np be positive integers and let h be a nonnegative integer.
Suppose d1|n1, . . . , dp|np and set n′i = ni/di, Ni = n1 . . . np/ni, N ′

i = n′1 . . . n
′
p/n

′
i,

Di = d1 . . . dp/di (1 ≤ i ≤ p) and

l =
(N1, . . . , Np)

(N ′
1, . . . , N

′
p)(D1, . . . , Dp)

.

Then we have

S(h;n1, . . . , np; d1, . . . , dp) =


1
lC[n′1,...,n

′
p](hl) , if

(
[d1,...,dp]

di
, n′i

)
= 1,

1≤i≤p

0 , otherwise.

In this section, as we mentioned earlier, the group G = 〈π1 . . . πp〉 is considered,
where the πi’s, 1 ≤ i ≤ p, are disjoint cycles in $n. Our main result, which appears in
the following theorem, is to calculate dimV n

χ (G), where χ ∈ I(G), in terms of known
number theoretical functions. Our formula involves the generalized Ramanujan sum.

Theorem 2.3 Let G = 〈π1 . . . πp〉, where the πi’s, 1 ≤ i ≤ p, are disjoint cycles
in $n of orders n1, . . . , np, respectively, and let χh, 0 ≤ h ≤ [n1, . . . , np] − 1, be an
irreducible complex character of G. If V be an m-dimensional vector space over C,
then

dimV n
χh

(G) =
mn−(n1+···+np)

[n1, . . . , np]

∑
d1|n1

.

.

.

dp|np

S(h;n1, . . . , np; d1, . . . , dp)md1+···+dp

where S(h;n1, . . . , np; d1, . . . , dp) denotes the generalized Ramanujan sum.
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3 On the Orthogonal Basis of the Symmetry Classes of

Tensors Associated with the Dicyclic Group

Abstract

A necessary and sufficient condition for the existence of O-basis for the symme-
try classes of tensors associated with the dicyclic group is given. In particular
we apply these conditions to the generalized quaternion group, for which the
dimensions of the symmetry classes of tensors are computed. In the following
we show some results appeared in [3].

Let G = T4n = 〈r, s| r2n = 1, rn = s2, s−1rs = r−1〉, n ≥ 1, be the dicyclic group as
a subgroup of $4n with Cayley representation, and let V be an m-unitary space, with
orthonormal basis {e1, . . . , em}. For n = 1, the dicyclic group T4 is cyclic, T4 ' Z4,
therefore all of its irreducible characters are of degree 1 and so V 4

χ (T4) has an O-basis

for all χ ∈ I(T4). Therefore we assume that n ≥ 2. If m = 1, then dim
4n
⊗V = 1, so

dimV 4n
χ (G) = 0 or 1, therefore we do not have any problem about the existence of

O-basis for V 4n
χ (G) for all χ ∈ I(G), therefore we assume that m ≥ 2.

For irreducible characters of T4n of degree 1, ψi, φi, 1 ≤ i ≤ 4, V 4n
ψi

(T4n) and
V 4n
φi

(T4n) have O-basis and so we do not deal with the ψi’s and φi’s.
Therefore we investigate the problem for irreducible characters of degree 2 of

T4n, i.e., χh, 1 ≤ h ≤ n− 1, which are given by

χh(rk) = 2 cos
khπ

n
, χh(rks) = 0, 0 ≤ k < 2n.

The following results are the main results in this section.

Theorem 3.1 Let G = T4n, n ≥ 2, and χ = χh, 1 ≤ h ≤ n− 1, dimV = m ≥ 2.
Then V 4n

χ (G) has an O-basis if and only if ν2(hn) < 0, where ν2 is 2-adic valuation.

Corollary 3.2 Let G = T4n, n ≥ 2 is odd, and χ = χh, 1 ≤ h ≤ n − 1,
dimV = m ≥ 2. Then V 4n

χ (G) does not have an O-basis.

Theorem 3.3 Let G = Q2n+1 = T4(2n−1), n ≥ 2, the generalized quaternion group,
and χ = χh, 1 ≤ h ≤ 2n−1 − 1, dimV = m ≥ 2. Then V 2n+1

χ (G) has an O-basis.
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4 On the Non-Vanishing of the Symmetry Classes of

tensors Associated with G = PSL2(q)

Abstract

The dimensions of the symmetry classes of tensors associated with the projective
special linear group of degree 2 over a field with q elements, PSL2(q), are
found. Of course we will assume PSL2(q) as a subgroup of the symmetric group
$q+1 because this group has a faithful action on the points of the underlying
projective space. We also discuss the non-triviality of the symmetry classes of
tensors associated with each irreducible character of PSL2(q). In the following
we show some results appeared in [4].

It is well-known that G = PSL2(q) acts faithfully and 2-transitively on the q + 1
points of the projective line Ω and so we can assume that G = PSL2(q) is a subgroup
of $q+1, therefore V q+1

χ (G) is meaningful for any χ ∈ I(G).
In the following we write the main results of this section. We discuss the question

of when the symmetry classes of tensors associated with G = PSL2(q) are nonzero
vector spaces. If dimV = s = 1, then it is clear that for all χ, χ ∈ I(G) − {1G},
V q+1
χ (G) = 0 and V q+1

1G
(G) 6= 0. Therefore we deal with the case dimV = s = 2 in

the following theorem.

Theorem 4.1 Consider G = PSL2(q) as a subgroup of $q+1 and let V be a vector
space over the complex field C, such that dimV = s = 2.
a) If q is odd, q = pn, q

4≡ 1; then for all χ, χ ∈ I(G)−{χi, ξ1, ξ2| i = 2, 4, . . . , (q−
5)/2; i

4≡ 2}, we have V q+1
χ (G) 6= 0. Additionally if q

8≡ 1, then V q+1
ξ1

(G) 6= 0 and
V q+1
ξ2

(G) 6= 0,

b) If q is odd, q = pn, q
4≡ 3; then for all χ, χ ∈ I(G)−{θj , η1, η2| j = 2, 4, . . . , (q−

3)/2; j
4≡ 0}, we have V q+1

χ (G) 6= 0. Additionally if q
8≡ 3, then V q+1

η1 (G) 6= 0 and
V q+1
η2 (G) 6= 0,

c) If q is even, q = 2n; then for all χ, χ ∈ I(G) − {θj | 1 ≤ j ≤ q/2}, we have
V q+1
χ (G) 6= 0.

Theorem 4.2 Consider G = PSL2(q) as a subgroup of $q+1 and let V be a vector
space over the complex field C, such that dimV = s ≥ 3. Then for all χ, χ ∈ I(G),
we have V q+1

χ (G) 6= 0.
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5 On the Orthogonal Basis and Non-Vanishing of the

Symmetry Classes of tensors Associated with a Group

G with Cayley Representation

Abstract

By Cayley’s theorem, any finite group G of order n can be regarded as a sub-
group of the symmetric group $n. Let χ be any irreducible complex character
of G and let V n

χ (G) denote the symmetry classes of tensors associated with G

and χ. In this section assuming the Cayley representation of G, we obtain a
formula for the dimension of V n

χ (G) and discuss its non-vanishing in general. A
necessary condition for the existence of the O-basis for V n

χ (G) is also obtained.
In the following we show some results appeared in [5].

Let V be an m-dimensional vector space over the complex field C and let G be a
finite group and Ω be a set of n elements. Suppose G acts faithfully on Ω, so we
can assume that G is a subgroup of $n, i.e., G = {g| g ∈ G} = {σg| g ∈ G} where
σg : Ω → Ω is defined by σg(ω) = g.ω for all ω ∈ Ω, is a permutation on n letters.
Therefore the vector space V n

χ (G) is meaningful for all χ ∈ I(G). The following
results are main results of this section.

Theorem 5.1 Let G be a group of order n, that is, a subgroup of $n by Cayley
representation. If V is an m-dimensional vector space over the complex field C, then
for all χ ∈ I(G), we have

dimV n
χ (G) =

χ(1)
n

∑
g∈G

χ(g)mn/o(g),

in particular, for all m ≥ 2, V n
χ (G) 6= 0.

Theorem 5.2 Let G be a non-trivial group of order n, that is, a subgroup of $n
by Cayley representation. If V is an m-unitary space, m ≥ 2, and χ ∈ I(G) such
that χ(1)2 > |G|/2, then V n

χ (G) dose not have an O-basis.

References

[1] L. J. Cummings, Cyclic Symmetry Classes, J. Algebra 40 (1976), 401-405.

9



[2] M. R. Darafsheh, M. R. Pournaki, On the Dimensions of Cyclic Symmetry Classes
of Tensors, J. Algebra 205 (1998), no. 1, 317-325.

[3] M. R. Darafsheh, M. R. Pournaki, On the Orthogonal Basis of the Symmetry
Classes of Tensors Associated with the Dicyclic Group, Linear and Multilinear Al-
gebra 47 (2000), no. 2, 137-149.

[4] M. R. Darafsheh, M. R. Pournaki, Computation of the Dimensions of Symmetry
Classes of Tensors Associated with the Finite two Dimensional Projective Special
Linear Group, Appl. Algebra Engrg. Comm. Comput. 10 (2000), no. 3, 237-250.

[5] M. R. Darafsheh, M. R. Pournaki, Non-Vanishing and Orthogonal Basis of Sym-
metry Classes of Tensors, To Appear in Southeast Asian Bull. Math.

[6] R. Freese, Inequalities for Generalized Matrix Functions Based on Arbitrary Char-
acters, Linear Algebra Appl. 7 (1973), 337-345.

[7] R. R. Holmes, T. Y. Tam, Symmetry Classes of Tensors Associated with Certain
Groups, Linear and Multilinear Algebra 32 (1992), 21-31.

[8] I. M. Isaacs, “Character Theory of Finite Groups”, Academic Press, New York,
1976.

[9] M. Marcus, “Finite Dimensional Multilinear Algebra”, Part 1, Marcel Dekker,
New York, 1973.

[10] R. Merris, The Dimension of Certain Symmetry Classes of Tensors II, Linear
and Multilinear Algebra 4 (1976), 205-207.

[11] R. Merris, “Multilinear Algebra”, Gordon and Breach Science Publishers, 1997.

[12] R. Merris, M. A. Rashid, The Dimension of Certain Symmetry Classes of Ten-
sors, Linear and Multilinear Algebra 2 (1974), 245-248.

[13] T. Y. Tam, On the Cyclic Symmetry Classes, J. Algebra 182 (1996), 557-560.

[14] B. Y. Wang, M. P. Gong, The Subspace and Orthonormal Bases of Symmetry
Classes of Tensors, Linear and Multilinear Algebra 30 (1991), 195-204.

10


